

Status of standardization and regulation with regards to GNSS in ITS

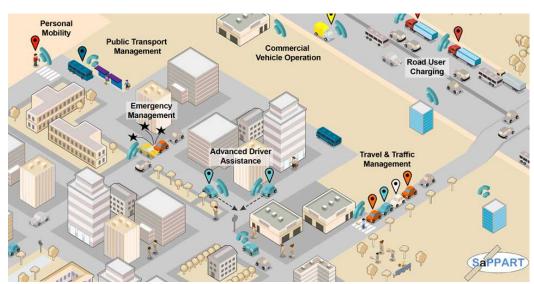
High Quality Positioning: a Key to Success for Autonomous Driving

Jesper Engdahl

Deputy Head of Traffic Telematics

Outline

- Context
- Gap analysis
 - Approach
 - Findings
- Summary



Context

GNSS users and integrators face 2 major challenges:

- estimate the expected performance of the service
- lack of common framework for defining and assessing GNSSpositioning performances

Gap analysis

Approach

- Inventory of relevant documents
- Gap analysis of the positioning aspects
- Synthesis and actions

Scope: 75 standards and 25 regulations in ITS (taximeters, DGT, EFC, eCall, Smart tachograph, C-ITS, ADAS, autonomous driving)

A few use cases and findings are highlighted in the following slides

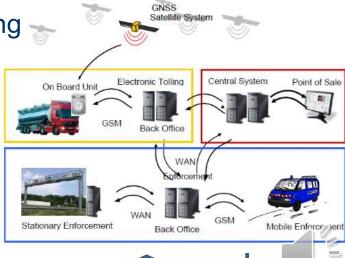
Findings - Dangerous Goods Transport

Directive 2008/68/EC on inland DGT

- Regulation barely addresses positioning aspects
- References the "provisions" in ADR re "tracking tracing" for high-consequence dangerous goods

Gaps

- Nothing about the positioning performance, not even for non-high consequence dangerous goods
- Nothing on geofencing of DGT on certain roads or areas
- Nothing on cross-border monitoring of DGT



Findings - Electronic Fee Collection

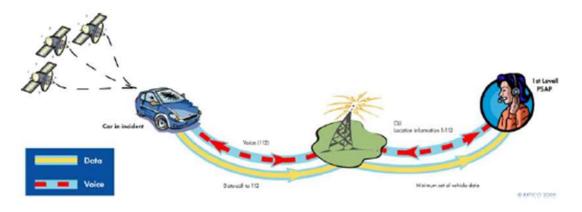
- EFC used to achieve a variety of transport pricing policies
- Main technologies used in Europe
 - CEN dedicated short-range communication
 - Video-based charging
 - Autonomous GNSS-based systems
 - Section-/cordon-based charging
 - Area-based charging

Findings - Electronic Fee Collection

- European electronic toll service (EETS) legislation in place
 - Separation of the Toll Charger and Service Provider (SP)
 - Positioning functionality and performance requirements
 (OBE + Proxy) responsibility of the SP
- Standards and recent procurements mirror the EETS legislation
 - E.g. ISO/TS 17444 on 'Charging performance metrics and examination framework'
 - E2E and intermediate metrics (e.g. toll declaration) but not the positioning performance
 - In line with the EETS legislation and to avoid duplication with 16803

Findings - Electronic Fee Collection

- A proposal for a recast of the EETS Directive and Decision launched in 2017-05
 - contain several significant changes but none regarding the handling of the positioning performance
- Gaps
 - no essential gap identified from the EETS-perspective
 - an open market for OBE requires that positioning performances are established; EN 16803 series is intended to bridge this gap



Findings - eCall

- The eCall system shall allow the "PSAP operator to identify the position and heading of the vehicle to a minimum degree of accuracy as defined in EN 15722 for the Minimum Set of Data (MSD) coordinates"
- "the receivers shall be compatible with the positioning services provided by satellite navigation systems including the Galileo and the EGNOS systems"

Findings - eCall

- 6 main eCall standards
- Only EN 15722 on eCall minimum set of data deals with positioning performance: a flag in the MSD should be set to 'no confidence' when "there is less than 95% confidence that exact position is within a radius of ± 150 m of reported position"

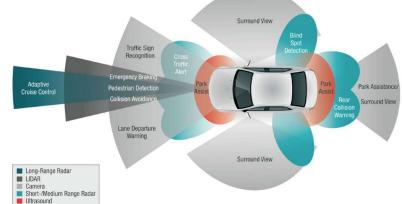
Gaps

- Regulation only referred to EN 15722
- EN 15722:
 - The meaning is not clear: the 95th percentile of the error distribution < 150 m?</p>
 - No conformity assessment test case

Findings - eCall

New EU regulation (2017/79) on EC type-approval procedures for eCall in-vehicles systems, technical units and components

- Test procedures defined in Annex VI
 - The tests are based on constellation simulators
 - Perhaps not the ultimate solution but a big step forward in anticipation of 16803-2
- applies from 2018-03-31



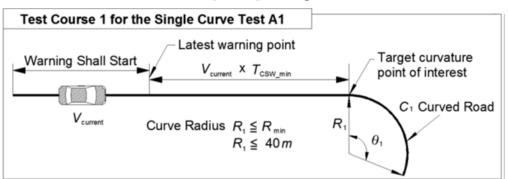
Increase safety and driving comfort, reduce emissions

New services

- Adaptive cruise control
- Curve speeds assistance
- Lane change assistance
- Vision enhancements
- Intersection collision avoidance
- New technologies competing concepts
- Legislation and liability difficult issues

What about vehicle positioning?

- vehicle positioning is not necessary for every service
 - ABS, automatic lighting, rear view assistance...
 - depends on the vehicle design (e.g. collision avoidance based on radar measuring the distance between the vehicles)
- but is part of the vehicle's system
 - navigation based only on relative information is not sufficient to cover all the cases
- necessity to have an absolute position
 - calibration of sensors: odometer, accelerometer, gyros
 - image correlation
 - map matching (lidar)



Example: Curve speed warning systems (CSWS)

- Performance requirements and test procedures (ISO 11067)
- The test course shall be located in an open place so that the GNSS receiver of CSWS functions properly

Gaps

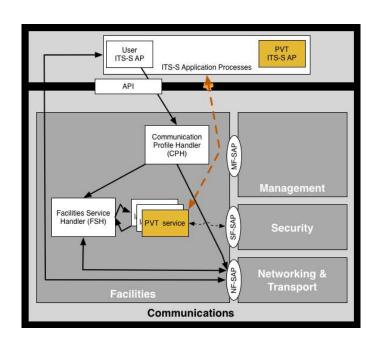
- Positioning performance indicators are generally neglected or not verifiable
- Test procedures do not reflect the real operational environment

Example B: Longitudinal Collision Risk Warning (LCRW, ETSI TS 101 539-3:2013)

 "In case position is used for longitudinal alignment estimation, the vehicle position accuracy shall be equal or less than one meter with a confidence level of 95 %"

Gaps

- Metrics unit not exact / verifiable
- Test procedure not defined



- On-going work "ISO/TS 21176 "PVT functionality in the ITS station"
- Prepared in cooperation between the ITS and the GNSS standardisation communities
- The need for and expectation on this new facility is growing among ITS stakeholders (Autonomous Driving...)
- A first draft is expected in the next weeks

Findings - Autonomous Driving

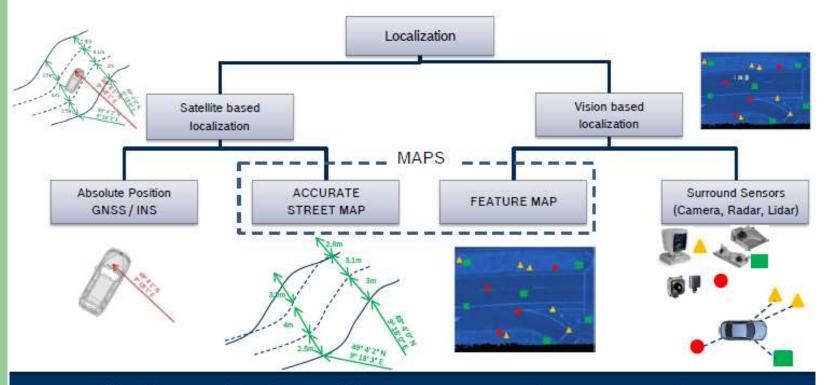
Series production

2018

2017

2020

> 2025



Finding - Autonomous Driving Options for Absolute Localization

 Localization can be done with MAPS, surround sensors and GNSS systems. Benefits and drawbacks on all sides.

Findings - Autonomous Driving

- From level 0 (no automation) to level 5 (fully autonomous)
- Levels 0, 1, and 2 corresponds to ADAS
- Levels 3 and 5 are what most people recognize as autonomous driving
- NHTSA does currently not recommend to establish safety standards for self-driving vehicle technologies

Gaps

 Legal, technological as well as human performance issues must be addressed in more depth before standards can be developed on a more solid basis

Summary

- GNSS-based positioning performances in ITS depend on the environment and are often overestimated
- Critical ITS applications require positioning performance indicators and examination framework
- Positioning QoS requirements are often neglected or not verifiable in current ITS regulations and standards
- Privacy protection considerations in current European regulations limit the use and societal benefits of positioning services
- Linking of GNSS-positioning and ITS experts starts to bear fruits.
 Room for strengthening the exchanges with the automotive industry and ITS legislators
- Standards are under development that can be used to underpin agreements between ITS stakeholders and to support ITS legislations

THANK YOU FOR YOUR ATTENTION!

Jesper Engdahl (TF1 leader)

e-mail: jesper.engdahl@rapp.ch phone +41 58 595 78 53

Ola Martin Lykkja (TF1 deputy leader)

e-mail: ola.lykkja@q-free.com phone +47 99 54 54 65

